
Welcome to CS50 section! This is Week 10 :(
● This is our last section!

● Final project dates
○ Official proposals: due this Friday at noon
○ Status report: due Monday, Nov 28 at noon
○ Hackathon: Thursday, Dec 1 at 7pm
○ Turn in: Thursday, Dec 8 at noon
○ Present: Friday, Dec 9

● Second midterm: Monday Nov 14 through Thursday Nov 17
○ Same “take home, no collaboration” policy

Chugging along

Course timeline:
Raw C code
Distribution C code
Raw Python code
Framework Python code (Flask)
HTML/CSS
JavaScript
Base frameworks: jQuery
Distribution JS code

Chugging along

Course timeline:
Raw C code
Distribution C code
Raw Python code
Framework Python code (Flask)
HTML/CSS
JavaScript
Base frameworks: jQuery
Distribution JS code

Application timeline:
On a computer

No input allowed
Input through cmd line
Input through files

Through a server
Input through API
Input through website

On a webpage
Input through JS

Before starting pset 8

● JavaScript vs Python vs C
● JavaScript syntax, data structures

● The document object model
● How to interact with the DOM through JavaScript

○ jQuery selectors and interaction

● Theories of AJAX

● Debugging in JavaScript

JavaScript

● Syntactically similar to C
○ Belongs in the family of “C-based languages”
○ Semicolons recommended but not technically required

● Practices just-in-time compiling (JIT)
○ Browsers will run JavaScript slightly differently

● Very weakly typed, similar to Python except even worse

● Some people hate JS, others love it
○ Modern JS programmers will “compile down” to JS

JavaScript → Syntax

// while loop

while (true)

{

 // do something

}

// for loop

for (initialization; condition; update)

{

 // do something

}

JavaScript → Data structures

● Normal variables can be of any type
○ var my_integer = 20

○ var my_float = 20.0

○ var my_string = “Brandon”

● Arrays in JavaScript are similar to lists in Python:
1D, mutable, contain anything, defined by square brackets
○ var my_array = [20, 21, “apple”, [“another”, “list”]]

my_array[0] // Returns 20

● Tuples a la Python do not exist

JavaScript → Data structures

● Objects in JavaScript are similar to dictionaries in Python and
structs in C: mutable, contain anything, keys are integers/strings
○ var my_object = { name: “Brandon”, year: 2019 }

● Functions in JavaScript can be both first-class and “anonymous”:
○ function func1() { return true; }

○ var func2 = function() { return true; }

○ var func3 = function exec_name() { return true; }

● JS objects are actually very complex:
○ They can contain functions, and thus objects can function

similarly to classes (with constructors, etc)

JavaScript → Functions in objects

var school_app = {

 apple: 5,

 load: function() { // Do something },

 read: function() { // Do something }

}

// Now I can call those functions

school_app.load()

school_app.read()

// Should still use bracket syntax to index into objects

school_app[“apple”] // Returns 5

DOM

● We can think of all of our HTML as a giant tree. Things are nested
beneath each other, etc.

● We call this tree the document object model (DOM)
○ Why? Each of the nodes is (sorta) like an “object” (synonym

here for dictionary a la Python)
○ But it’s not exactly this way-- hence “model”

DOM

<!DOCTYPE html>

 <head>

 <title id="title">Hey Rob!</title>

 </head>

 <body>

 <div>

 </div>

 <div>

 <p id="quote">There is no happiness in the world, only rice...</p>

 </div>

 </body>

</html>

DOM

DOM and JavaScript

● The main reason software engineers created the DOM is to develop
a good way of interacting with the page through JavaScript.

● Benefits?
○ Why not just through Python?

DOM and jQuery

● It’s actually a bit of a pain to do things with JavaScript directly, so
libraries have been created to help us out.

● jQuery is a popular DOM manipulation library.
○ (It does other things too)

● Letting us turn:
 document.getElementById("quote").innerHTML = "alllllright";
Into:
 $(“#quote”).innerHTML(“alllllright”);

Selecting elements through jQuery

● Select elements through the jQuery selector:
$(“ELEMENT”)

<element id=”apple” class=”orange blueberry”

attribute=”blah” attribute2=”bleh”>

 Hello!

</element>

Selecting elements through jQuery

<element id=”apple” class=”orange blueberry”

attribute=”blah” attribute2=”bleh”>

 Hello!

</element>

Select element by ID:
var $element = $(“#apple”)

$element.attr(“attribute”) // returns “blah”

Selecting elements through jQuery

<element id=”apple” class=”orange blueberry”

attribute=”blah” attribute2=”bleh”>

 Hello!

</element>

Select element by class:
var $element = $(“.orange”)

$element.attr(“attribute”) // returns “blah”

Selecting elements through jQuery

<element id=”apple” class=”orange blueberry”

attribute=”blah” attribute2=”bleh”>

 Hello!

</element>

Select element by classes:
var $element = $(“.orange.blueberry”)

$element.attr(“attribute”) // returns “blah”

Selecting elements through jQuery

<element id=”apple” class=”orange blueberry”

attribute=”blah” attribute2=”bleh”>

 Hello!

</element>

Select element by element name:
var $element = $(“element”)

$element.attr(“attribute”) // returns “blah”

Selecting elements through jQuery

<bah>

 <element id=”apple” class=”orange blueberry”

 attribute=”blah” attribute2=”bleh”>

 Hello!

 </element>

</bah>

Select element by DOM hierarchy:
var $element = $(“bah element.orange”)

$element.attr(“attribute”) // returns “blah”

Selecting elements through jQuery

● Selector names are the same as in CSS

● You can do a lot of things through jQuery
○ Change values
○ Change CSS of an element, i.e. change its look and feel
○ Adding events

Adding events, you say?

JavaScript → Events

What’s an event?

An event is an action that happens on a page. Anything from a click, to
the page loading successfully, to your mouse moving around, to a
keyboard action, and so on and forth.

In JavaScript, we can attach functions (called callbacks or event
handlers, depending on the context) that do something when these
events occur.

JavaScript → Events

What are some examples of events?

AJAX

● AJAX → “Asynchronous JavaScript and XML” (outdated definition!)

● A better definition: AJAX is an asynchronous method of
communicating with a server, usually with JavaScript and JSON.

Let’s talk about:

● Synchronicity and async
● JSON (JavaScript Object Notation)
● Events in the context of async (callbacks, etc)

Debugging in JavaScript

A live demo...

Before starting pset 8

● JavaScript vs Python vs C
● JavaScript syntax, data structures

● The document object model
● How to interact with the DOM through JavaScript

○ jQuery selectors and interaction

● Theories of AJAX

● Debugging in JavaScript

That’s all for today
(and the term!)

