
Welcome to CS50 section!
As you get settled, please write this all down-- it will be helpful:

My name Brandon Wang

My email cs50@brandon.wang
brandonwang@college.harvard.edu for non-CS50 related

Section materials brandon.wang/cs50
Please bookmark me now

Office hours Mondays 4-5pm
CS50 at HSA, 67 Mt. Auburn Street #400

Then, open your
IDE and run:

cd ~/workspace
git clone https://github.com/bw/cs50-section.git

Today’s agenda

● About me and about CS50
● Resources you can use
● Keys for success in CS50

○ AKA “norms”

● Quick introductions

● Grading guidelines
○ Easy ways to raise your grade
○ Pet peeves of graders

● New material
○ Debugging
○ Arrays
○ Functions
○ Command line arguments

● Pset 2 review

● Questions

About your shiny new TF

● Brandon Wang
● Sophomore, Lowell House
● Statistics, Government, and Computer Science

● Houston, TX and New England
● brandonwang@college.harvard.edu

My background

● I took CS50 too
● Background in web and full-stack development

(What does that even mean?)

● Primary background in HTML/CSS/JavaScript/jQuery, PHP, SQL
● Some background in C, Python, and a whole bunch of other tech
● (Most programming languages are very similar!)

● Talk to me about startups, edtech, ideas, and more
● Happy to grab meals with any of you

CS50 overview

Newly designed this year to be more approachable:

● Starting with C
○ Foundations of programming

● Adding in some Python (2-3 weeks)
○ Useful programming language for variety of needs
○ Data science applications

● Ending with JavaScript (1 week)
○ The dynamic web
○ A fairly different language, but very necessary to know

CS50 overview

CS50 is also about much more:

● Fundamentals of modern computing
(How does the Internet work?)

● Logical, quantitative, and procedural thinking
(How should I approach a problem?)

● A broad overview to programming as a whole
(How is coding for the Internet different? How are they the same?)

My personal opinions

● CS50 as an overview to software
● CS50 as a gateway to computer science

● CS50 as an introduction to programming
● CS50 as an introduction to software engineering

● CS50 as a quintessential Harvard experience
○ Relax and try to enjoy it
○ But understand it will be stressful at times

■ And be okay with that. You’re taking CS50 to learn something

About getting help

● You should always feel comfortable getting help.

● Course-wide resources:
○ Big office hours (Wed, Thurs, Sun) (Widener, Northwest)
○ Small office hours (Every day) (HSA)
○ Online resources
○ Google

● Resources from me:
○ Section--first line of attack
○ Email and office hours

Section with me/others

● Should you go to section?
YES!

(Please clap come to section)

● Section is better for everyone
when more people attend

● I promise to make it as helpful as I can… This is not lecture
● This is a class you can fall behind on; don’t let that happen
● Shows initiative to me (your grader)

Office hours with me

Every TF grades slightly differently

● Small office hours (HSA)
○ With me: Monday 4-5pm

■ Students in this section receive priority during this slot

○ Other TFs: Most of the day, 7 days a week

● Big office hours
○ For everyone in the course. Come work on psets with others
○ Do this earlier rather than later in the week

Emailing me

Questions, comments, compliments, complaints:

● TO: cs50@brandon.wang
● FROM: Your Harvard email address (or the email you used to register for CS50)

● Why?
○ Keep track of emails with you easily
○ Keep track of which emails are about CS50
○ Helps me refer back to our conversations at end of term

Succeeding in this course

● TFs are students too-- please don’t overwhelm us

● Course-wide resources are better staffed this year,
but they may still be frustrating.
○ Take advantage of your friends and dorm/entry mates
○ Work on psets together
○ Work on psets in office hours and in public places
○ A lot of people take this class

Today’s agenda

● About me and about CS50
● Resources you can use
● Keys for success in CS50

○ AKA “norms”

● Quick introductions

● Grading guidelines
○ Easy ways to raise your grade
○ Pet peeves of graders

● New material
○ Debugging
○ Arrays
○ Functions
○ Command line arguments

● Pset 2 review

● Questions

Grading guidelines

Turning in your pset

● Never turn in a pset late
○ 1 min late = 0 credit, not even partial (CS50 policy, not mine)
○ Give yourself ample buffer time

■ You will still get feedback from me for late psets

● Must not: Have excuses as comments in psets
■ Always OK: “I didn’t quite understand this part of the pset”
■ Annoying: “I had a ton of work last night so sorry about this whole file!”

○ Desperate to include an excuse? Email to me instead
■ No obligation to take pity on you

○ Optional: Include a joke or pun at beginning of pset

Style

● Style takes so little time and is so important. Get this right.
● For most engineers (including me), a massive deal-breaker

● You should ALWAYS follow these rules (more on them now)
○ Indentation
○ Proper commenting
○ Intuitive naming
○ Logical flow
○ Abstraction

■ We will cover functions today

Style → Always indent properly

Either is OK, but be consistent:

if (fruit = "Apple") {

 printf("You're healthy\n");

}

if (fruit = "Apple")

{

 printf("You're healthy\n");

}

Please don’t do this:

if

(fruit = "Apple") {

 printf("You're healthy\n");

}

if (fruit = "Apple") {

printf("You're healthy\n");

}

Style → Always indent properly

● Indentations help us understand the structure of your code

● In C, indentations are for humans, not computers
○ (In Python, later in the term, they will matter for computers too!)

● Not indenting things consistently is frustrating for everyone

● Must: Always indent your code properly
○ It takes 2 minutes and your grade will go up

Style → Always indent properly

Either is OK, but be consistent:

if (fruit = "Apple") {

 printf("You're healthy\n");

}

if (fruit = "Apple")

{

 printf("You're healthy\n");

}

Please don’t do this:

if

(fruit = "Apple") {

 printf("You're healthy\n");

}

if (fruit = "Apple") {

printf("You're healthy\n");

}

Style → Always indent properly

int main(int argc, char *argv[]) {

 …

 while (x == y) {

 something();

 something_else();

 if (some_error)

 do_correct();

 else

 continue_as_usual();

 }

 finalthing();

 …

}

Style → Always indent properly

● Official CS50 style guide:
https://manual.cs50.net/style/

● I prefer start brackets on the same line as the control
○ You will not lose points if you do not do this

if (fruit = "Apple") {

 // Doing something here

 printf("You're healthy\n");

 return true;

}

https://manual.cs50.net/style/
https://manual.cs50.net/style/

Style → Comments

● Helpful in context
○ Better to explain with variable naming and clear code, rather

than to write a comment

● Err on side of more comments if unsure
○ (Especially for less comfortable coders)
○ Comments might make the difference between partial credit

and no credit at all

● Don’t be excessive, don’t comment every line

Style → Comments

Good to have:

● Commenting tricky bits
● Magic numbers
● Unfamiliar libraries
● Clever logic

○ Don’t be clever!

Unnecessary:

● Control structures
● Basic definitions
● Comments for the

sake of commenting

Style → Comments

// Convert Fahrenheit to Celsius.

float c = 5.0 / 9.0 * (f - 32.0);

// Define the num_apples variable

int num_apples = 4;

//I didn’t put a space at the beginning!

/**

 * I am a multiline comment!

 * Hi!

 */

Style → Intuitive naming

● Variable names should make sense
● Contextually identify its type
● Long variable names are generally okay--nobody cares!

● Integers
○ num_apples, num_people_in_line

● Strings
○ first_name, last_name, address

● Booleans (true/false)
○ is_turned_on, has_activated_account

● Lists and arrays
○ apples, people_in_line

Style → Logical flow

● We will learn more about this as the course progresses

In general:
● Be intuitive about the ordering of your code
● Organize things into visual blocks
● Limit the number of loops you do

Style → Abstraction

● Functions, functions, functions
● You should ideally never copy-paste code

● This will become increasingly important

Key takeaways for style

You will earn points if--

● Your code is easy to understand and read through
● You segment it intuitively
● You abstract out sections and utilize functions and loops

You will lose points if you do not--

● Indent properly and consistently (inexcusable!)
● Comment your code properly (inexcusable!)
● Name your variables confusingly

Today’s agenda

● About me and about CS50
● Resources you can use
● Keys for success in CS50

○ AKA “norms”

● Quick introductions

● Grading guidelines
○ Easy ways to raise your grade
○ Pet peeves of graders

● New material
○ Debugging
○ Arrays
○ Functions
○ Command line arguments

● Pset 2 review

● Questions

This week’s content
(New material)

Today in section

You should understand these concepts before starting pset 2:

● Debugging
● Arrays
● Functions
● Command line arguments
● ASCII
● Modulo (%)

Debugging

Tools at your disposal:

● Simple debugging
○ printf
○ eprintf

● Smart debugging
○ Debuggers
○ (Later in term, other

tools)

● CS50 tools (help50)
○ So extremely and ridiculously

unrepresentative of real coding

Simple debugging

● Is this code being run?
● Is this even working?
● What is this number?

● Low hassle and easy

● eprintf

Smart debugging

● debug50
○ Step into
○ Step over
○ Display variables
○ Change variables’ values

● Let’s give it a shot together

Arrays

How do you make an array?

Arrays

How do you make an array?

<datatype> <name>[<size>];

● char alpha[26];

● int score[5];

Arrays

How do you initialize an array?

Arrays

How do you initialize an array?

int score[0] = 0; // zero index all arrays!

int score[1] = 1;

int score[2] = 2;

int score[] = {0, 1, 2}; // size based on the number of entries

Arrays

What are strings?

Arrays

What are strings?

● Without getting into the complexities…
○ Strings = Arrays of characters

● For now:
○ You can index into strings like any other array
○ string s = "brandon wang"

○ s[0]?

○ s[4]?

○ s[7]?

○ s[500]?

Arrays

● How many things in an array?
○ You pick; you remember
○ To get it back: int size = sizeof array / sizeof array[0];

Arrays

Section exercise:

1. Create an array that has your name
2. Iterate over its members

3. Give me the corresponding ASCII integer for the letter

Functions

● Functions are black boxes
● Think math

Functions

● Functions are black boxes
● Think math
● By definition, functions:

○ (1) take something in [parameters],
○ (2) do something [methods], and finally
○ (3) spit out an answer [return value].

Functions

Why use functions?

● Simplification
○ Easier to write smaller pieces of code
○ Easier to use smaller pieces of code

● Organization
○ Breaking code into subparts is helpful

● Reusability

Functions

One function everyone has seen already is int main(void)

Functions

One function everyone has seen already is int main(void)

● int is the return type
● main is the name of the function

○ Every program needs a main() function: it signifies to the
computer where to start running your code

● void is the parameter, which, in this case, is nothing

Functions

Variable scope?

● Bring along things you need
● Keep your workspace clean

Command line arguments

● argc
● argv

Command line arguments

● argc
● argv

● If, for example, in my terminal window I type in:
○ ./mario 8

○ ./luigi 82 carrot bob

Pset 2 review

