
Welcome to CS50 section! This is Week 3.
Please open your CS50 IDE and run this in your console:

cd ~/workspace/cs50-section ↵

git reset --hard ↵

git pull

If new to this section, visiting, or want to “start over”, run this in your console:
rm -r -f ~/workspace/cs50-section/ ↵

cd ~/workspace ↵

git clone https://github.com/bw/cs50-section.git

Fun fact! Banging your head against the wall burns 150 calories an hour.
(This will come in handy later on in the term. Just kidding!)

Cumulative concepts for this week

● Arrays
● debug50
● Asymptotic notation

○ O and sigma

● Linear search
● Binary search

● Bubble sort
● Insertion sort
● Selection sort
● Merge sort, in theory only

● Recursion

● Using distribution code

More introductions!

Arrays, revisited

● For all data types

● Be very comfortable with common array operations
○ Indexing into an array (i.e. get each element one at a time)
○ Comparing across elements of an array
○ Making changes to an array

● Only strings need \0 at the end
○ Why?

Asymptotic notation

● Big O notation
○ Describes an upper bound on algorithm run time

Asymptotic notation

● Big O notation
○ Describes an upper bound on algorithm run time

In this notation we simplify and ignore lower-order terms:

● Ignore all constants. Why?
● If x2+ x, ignore x. Why?
● If x3 + x2 + x, ignore x2 + x. Why?
● If x log(x), leave as is. Why?

Asymptotic notation

● Little O notation (�)
○ Describes lower bound on algorithm run time
○ Think of as, what’s the best case scenario?

● Think about the algorithm and the implementation

Asymptotic notation

Think about these actions:

● Swaps
● Comparisons
● For loops

Searching

● Linear search
○ Prerequisites
○ Benefits
○ Disadvantages
○ Upper bound
○ Lower bound

● Binary search
○ Prerequisites
○ Benefits
○ Disadvantages
○ Upper bound
○ Lower bound

Before we talk about bubble sort...

Let’s talk about break.

Before we talk about bubble sort...

Let’s talk about break.

● We are iterating (i.e. using a for loop)
● We’re checking for something
● We want to stop iterating

Before we talk about bubble sort...

Let’s talk about break.

for (int i = 0; i < n; i++) {

 …

 if (we should stop) {

 break;

 }

}

More about break

A very useful concept.

● Works in for and while loops
● Will always jump out of the inner-most loop

Bubble sort (pset 3)

Let’s craft the pseudo code for bubble sort.

Bubble sort is on pset 3.

Bubble sort (pset 3)

What are the nuances to consider?

● Is this an efficient implementation of bubble sort?
○ How do you know when to stop sorting?
○ How many loops are you doing?

Hint: You’ll lose design (and potentially correctness) points if
your code always runs with the worst-case scenario in mind.

Selection sort

Insertion sort

Merge sort

For purposes of section, understand--

● Divide and conquer

● Sort the left
● Sort the right
● Put them together

○ Look through, from the leftmost element
○ Which one is smaller? Grab that one first
○ Rinse and repeat

Merge sort

Merge sort

Let’s craft the basic pseudo code for merge sort.

● This can get complicated, so we’ll keep things simple.
● You’ll probably be tested on merge sort.

Recursion

More on that “divide and conquer”

What is recursion?

Recursion

All recursions have--

● Base case
○ This is the end

● Recursive case
○ Do it again!

Recursion

● Recursion has upsides
○ Beautiful code
○ Sometimes easier to understand

● Recursion has downsides
○ Can be memory-intensive
○ Can be harder to understand (bummer…)

Recursion

An exercise! Let’s write a recursive function that
finds the Fibonacci number given the number of terms.

Load up your IDE!

Using distribution code

● Much of computer science involves wrangling other people’s code
○ With all of their idiosyncrasies, annoyances, etc.
○ Get used to it!

● In CS50, the code is generally written pretty well
○ So think about what your piece is contributing and how

Problem set 3

I can’t say too much here! :(

But, thinking about this pset broadly,

● Do the pset in chunks, not all at once
● Game of fifteen

○ What are the allowed moves?
○ What happens during each move?
○ How do you check if the user has won?

That’s all for today!

