Dynamic Memory Allocation

Dynamic Memory Allocation

* We've seen one way to work with pointers, namely pointing a
pointer variable at another variable that already exists in our
system.

* This requires us to know exactly how much memory our system will
need at the moment our program is compiled.

* What if we don’t know how much memory we’ll need at
compile-time? How do we get access to new memory while
our program is running?

Dynamic Memory Allocation

* We can use pointers to get access to a block of dynamically-
allocated memory at runtime.

* Dynamically allocated memory comes from a pool of memory
known as the heap.

* Prior to this point, all memory we’ve been working with has
been coming from a pool of memory known as the stack.

Dynamic Memory Allocation

text

initialized data

uninitialized data

heap

|
|

stack

environment variables

Dynamic Memory Allocation

text

initialized data

uninitialized data

environment variables

Dynamic Memory Allocation

* We get this dynamically-allocated memory by making a call to
the C standard library function malloc(), passing as its
parameter the number of bytes requested.

* After obtaining memory for you (if it can), malloc () will
return a pointer to that memory.

* What if malloc() can’t give you memory? It’ll hand you back
NULL.

Dynamic Memory Allocation

// statically obtain an integer
int Xx;

Dynamic Memory Allocation

// statically obtain an integer
int Xx;

// dynamically obtain an integer
int *px = malloc(4);

Dynamic Memory Allocation

// statically obtain an integer
int Xx;

// dynamically obtain an integer
int *px = malloc(sizeof(int));

Dynamic Memory Allocation

// get an integer from the user
int x = GetInt();

Dynamic Memory Allocation

// get an integer from the user
int x = GetInt();

// array of floats on the stack
float stack array[x];

Dynamic Memory Allocation

// get an integer from the user
int x = GetInt();

// array of floats on the stack
float stack array[x];

// array of floats on the heap
float* heap array = malloc(x * sizeof(float));

Dynamic Memory Allocation

* Here’s the trouble: Dynamically-allocated memory is not
automatically returned to the system for later use when the
function in which it’s created finishes execution.

* Failing to return memory back to the system when you’re
finished with it results in a memory leak which can
compromise your system’s performance.

* When you finish working with dynamically-allocated memory,
you must free() it.

Dynamic Memory Allocation

char* word = malloc(50 * sizeof(char));

Dynamic Memory Allocation

char* word = malloc(50 * sizeof(char));

// do stuff with word

Dynamic Memory Allocation

char* word = malloc(50 * sizeof(char));
// do stuff with word

// now we’re done working with that block
free(word);

Dynamic Memory Allocation

* Three golden rules:

1. Every block of memory that you malloc () must
subsequently be free()d.

2. Only memory that youmalloc() should be free()d.

3. Do not free() a block of memory more than once.

Dynamic Memory Allocation

int m;

Dynamic Memory Allocation

int m;

Dynamic Memory Allocation

int* a;

Dynamic Memory Allocation

int m;
int* a;

Dynamic Memory Allocation

int m;
int* aj;
int* b = malloc(sizeof(int));

Dynamic Memory Allocation

int m;
int* aj;
int* b = malloc(sizeof(int));

m
a b

Dynamic Memory Allocation

int m;
int* aj;
int* b = malloc(sizeof(int));
a = &m; '
a b

Dynamic Memory Allocation

int m;
int* aj;
int* b = malloc(sizeof(int));

a = &m;

a b

Dynamic Memory Allocation

int m;
int* aj;
int* b = malloc(sizeof(int));

a = &m;

a = b;

a b

Dynamic Memory Allocation

int m;
int* aj;
int* b = malloc(sizeof(int));

a = &m;

a = b;

Dynamic Memory Allocation

int m;
int* aj;
int* b = malloc(sizeof(int));

a = &m;

a = b;
m = 10;

Dynamic Memory Allocation

int m;
int* aj;
int* b = malloc(sizeof(int));

a = &m;

a = b;
m = 10;

Dynamic Memory Allocation

int m;
int* aj;
int* b = malloc(sizeof(int));

Dynamic Memory Allocation

int m;
int* aj;
int* b = malloc(sizeof(int));

Dynamic Memory Allocation

int m;
int* aj;
int* b = malloc(sizeof(int));

Dynamic Memory Allocation

int m; o A

|

int* a; | |
|

int* b = malloc(sizeof(int)); K,___r“}

a = &m;

a = b;

m = 10;

*b = m + 2;
free(b);

Dynamic Memory Allocation

int m; o A

|

int* aj; i i
|

int* b = malloc(sizeof(int)); K,___r“}

a = &m;

a = b;

m = 10;

*b = m + 2;
free(b);

Dynamic Memory Allocation

int m; o A

|

int* aj; i i
|

int* b = malloc(sizeof(int)); K,___r“}

a = &m;

a = b;

m = 10;

*b = m + 2;
free(b);

