
Welcome to CS50 section! This is Week 4.
Please open your CS50 IDE and run this in your console:

cd ~/workspace/cs50-section ↵

git reset --hard ↵

git pull

If new to this section, visiting, or want to “start over”, run this in your console:
rm -r -f ~/workspace/cs50-section/ ↵

cd ~/workspace ↵

git clone https://github.com/bw/cs50-section.git

Start early on pset 4, it’s tough!

Know before attempting pset 4:

● Redirection methods
● Writing to/reading from file

● Memory management
○ Heap and stack
○ Dynamically allocated memory

● Pointers

● Hexadecimal

● Structs
○ Accessing fields in structs

Redirection

Useful for a variety of things:

● Grabbing the output of a command
● Putting something into a command

● We want the data into a file, not just shown

Redirection

Using > and | controls the input and output of a program.

> Output to file
>> Output and append
2> Output only error messages

< Input to file
| Take the output of one, and use it as input for another

File I/O

The ability to read data from and write data to files is the primary
means of storing persistent data, data that does not disappear when
your program stops running.

● The abstraction of files that C provides is implemented in a data
structure known as a FILE.

● Almost universally when working with files, we will be using
pointers to them, FILE*

File I/O

● Find file manipulation in stdio.h

● Common file I/O functions
○ fopen()

○ fclose()

○ fgetc()

○ fputc()

○ fread()

○ fwrite()

File I/O

Switching to CS50-standard slides...

Good file I/O structure

#include <stdio.h>

int main(void) {

 // open file "input.txt" in read only mode

 FILE* in = fopen("input.txt", "r");

 // always make sure fopen() doesn't return NULL!

 if (in == NULL) return 1;

 // open file "output.txt" in write only mode

 FILE* out = fopen("output.txt", "w");

 // make sure you could open file

 if (out == NULL) return 2;

Good file I/O structure

 // get character

 int c = fgetc(in);

 while (c != EOF) {

 // write chracter to output file

 fputc(c, out);

 c = fgetc(in);

 }

 // close files to avoid memory leaks!

 fclose(in);

 fclose(out);

}

More slides

● Dynamic memory allocation
● Pointers

(Also will be posted to brandon.wang/cs50 after section)

Structures

Encapsulate data together.

● This is C’s answer/precursor to object oriented programming
● Smarter way of programming

Structures → Make a struct

struct student {

 char first_name[50];

 char last_name[50];

 char hometown_city[50];

 char hometown_state[2];

 int class_year;

}

Structures → Use the struct

struct student brandon;

Structures → Assign and access fields

struct student brandon;

brandon.first_name = “Brandon”;

brandon.last_name = “Wang”;

printf(“%s”, brandon.first_name); // Prints “Brandon”

printf(“%s”, brandon.hometown_city); // Error

That’s all for today!

